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Fusion-based quantum computation v
2021145k (2023) Bartoluce, Sara, Birchall, Patriek, Bombin, Hector, Cable, Hugs, Dawsen .
2019613 The standard primitives of quantum computing include detesministic unitary entangling BEFTRMAMEE, SHRRET [253789) WXFRFit
aRtEE gates, which are net natural operations in many systems including photonics. Here, we Wimies, AR TEEAS [193) HEELeT

present fusion-based quantum computation, a madel for fault tolerant quantum computing HESH,
constructed from physical primitives readily accessible in photonic systems. These are

EXHEREFRPE018E. 202152022
&, BRAECOR, BAUWANEFERTITRANNWRERE
. 2023FRTVRERIENER. PEMERAKE, K

Verifiable Multiparty Delegated Quantum Computation IAFFAPHNNER T HHAFRSHRAAR.

E\-" Qin, Wang, Can, Zhu, Jiang, Xu, Lingling, St wei ANECIEEIEESER TN, BESENESFEE
Multiparty delegated quan ion (MDQC) allows multiple clients with limited FHEE. AFE-BoRRERETAIRFiINERANES
quantum capabllity to jointly complete a quantum computationsl task with the aid of an SHEED, FE— iy R RGBT NEGS AR,

untrusted quantum server. But in existing MDGC protocols, the verifiabifty that clients
should verify whether the server executed the protocol carractly and gave carrect results.

HFEHARMIEDR(ORTF RN, REFRFRE
BoRGE BN, EEMAERNEE I s
FitRMENERTTAN XIS BE,

Oblivious Quantum Computation and Delegated Multiparty Quantum

Computatior B-AFENMHRRTE AR T I NN ST
p - HEAFRUERFORRTFRANERAS, BATHFITE
(2023)) Masahito Hayast

- HEiE BRI EEY.

We propose a new concept, oblivious g which requiresp

oblivious transfer with respect to the outcome of . N P "
whera tha secrecy of the input qubits and the program toidentify the quantum gates are TSR mhiE oy B

required. We propose a two-server protecol forthis task, which realizes an expanential.

Quantum Computation of Hydrogen Band Dynamics ibrational Spectra

(2023)) Richerme, Philip, Revelle, Melissa C, Yale, Christoph

G, Lobser, Danlel, Burch, A...
Caleulating ebservable properties of chemical systemsis oftenciassically intractable snd
wiclely viewed as a promising applicationof quantum information processing. Here, we
intreduce a new framewarkfor solving generic quantum chemical dynamics preblems using c c

quantumlogic. We experimentally demonstrate a proof-of-principle instanceof our method...

1 RRAFERAFT
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Training language models to follow instructions

with human feedback 4F, WOERBRREAMFYE, HFRXBEBME:
E
Long Ouyang®  Jeff Wu*  Xu Jiang'  Diogo Almeida®  Carroll L. Wainwright” ERIL BT A XE AT, EARE A
GPT-3BHPEMIEAR M, FHU TR AInstructGPTHE
Pamela Mishkin® ~ Chong Zhang  Sandhini Agarwal  Katarina Slama  Alex Ray o, ENSERNSENORN, EETRHSNXERLLTE
John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens Fiik
Amanda Askell! Peter Welinder Paul Christians’! RIS T A R TR uﬁﬂ*ﬁﬂ!
. AESREE, FEM
Jan Leike® Ryan Lowe" ﬂOpenalaP!E}ZElﬂTﬁm BT A E N ERWET N
WREEN, FERLEE INGPIIAGME, ME, BINT
OpenAl HEEAA e ST — iR

s&‘HﬁIlt EH BB BB D InstuctGPT, THERE
H, BESHLTIONE, BEARFRET, 1LIBBMMINstructGPT

Abstract BRI T TSR GPT-3808M, Bk, InstructGPTHIBIE

g | odels bigger doss ot i iy make them belter at follows MEEAEERGE, MRl THSRLNER, TELANPER
Making language models bigger inherently m. < at following -
R o et AT sltmmﬂﬁm ERinstructGPTI A T E R
are untruthful, toxic, or simply not helpful to the user. In other words, these DA TR
models are not aligned with their users, In this paper, we show an avenue for 19(1@!!2!!?!@5)\;3@&}! o
aligning language models with user intent on a wide range of tasks by fine-tuning
with human foedback. Starting with a set of labeler-writien promts and prompis g
submittcd through the OpenAl APY, we collcet a datasct of labeler demonatrations
of the desired model behavior, which we e 1o fine-tune GPT-3 using supervised ; em, Az S— i
Ieaming. We then collect a dataset of rankings of model outputs, which we use 1o ﬂﬁiwgel AR ZEIEIRE, MUEATEEE
further fine- mmﬂussupemmdmndumngmmﬁmuuuulummgmmm 1 i A~ B,
feedback. We call the resulting models InstructGPT, In human evaluations on i, ERBFIMAREERTRER-RRIRNGE.

our prompt distribution, cutputs from the 1.3 parameter InstructGPT meodel are
grefeed i ouputs from he 1738 GE'-3, despicRaving 00 fewer pasmctrs.

Moreover, InstnictGPT models show improvements in muthfulness and reductions SRR A GBS,
i tonic outpul generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results

arXiv:2203.02155v]1 [cs.CL] 4 Mar 2022

show that fine-tuning with human feedback is a promising direction for aligning
Tnguage models with buman inten.
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1 Introduction @ WUAR

Large language models (LMs) can be “prompted” t perform & range of natural language process-
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Abstract

Making language models bigger does not inherently make them better at following
a user’s intent. For example, large language models can generate outputs that
are untruthful, toxic, or simply not helpful to the user. In other words, these
models are not aligned with their users. In this paper, we show an avenue for
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback. Starting with a set of labeler-written prompts and prompts
submitted through the OpenAl API, we collect a dataset of labeler demonstrations
of the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show improvements in truthfulness and red=~* -
in toxic output generation while having minimal performance regressions o1 _
NLP datasets. Even though InstructGPT still makes simple mistakes, our REUEE
show that fine-tuning with human fec = ’ oo T

language models with human intent. . [ H)ES S
iy 3| s
1 Introduction FINESR

Large language models (LMs) can be “prompted” to perform a range of natural lauguage process-
ing (NLP) tasks, given some examples of the task as input. However, these models often express
unintended behaviors such as making up facts, generating biased or toxic text, or simply not following
user instructions (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021; Weidinger et al.,
2021; Tamkin et al., 2021; Gehman et al., 2020). This is because the language modeling objective

*Primary authors. This was a joint project of the OpenAl Alignment team. RL and JL are the team leads.
Corresponding author: loweQopenai . com.
fWork done while at OpenAL Current affiliations: AA: Anthropic; PC: Alignment Research Center.
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1. GPT-1(Generative Pre-Training):GPT-120penAIFE20185F R E—TEF Transformerf il S8R, RATH
[E)TransformerZ24y, B1& T12EMM/M T8, GPT- 1B TFERIE, REAXEFEZES,

r

. GPT-2(Generative Pre-trained Transformer 2):GPT-220penAlTE2019F EHNFRARIRE, RATESHNS MM
EiREYTransformerZi#, EET158 TS, GPT-2EEM XA, E, BRIBESESLRNMLE.

3. GPT-3(Generative Pre-trained Transformer 3):GPT-3/20penAlfE20205F & MV FIIEEE, RKAT B AN
BRHBEALR, S&T1758-M2H, GPT-37EEMXA. BE, Bif. RENHESES LEMBTIERIFHNE
m,

B~

. ChatGPT:ChatGPTEOpenAlfE2022F B FGPT-3EE A AR, FBHWMIFESHT T HRA, WMTHEHLH
WAL, DRAERENEHE. ChatGPTEMEIS LRMEE, TS AXRTEARBIINIE.

5. GPT-4(Generative Pre-trained Transformer 4):GPT-420penAlf£2023F £ B IT—CEE, E£FEEHIESR, Ch
atGPTHIGPT-4Z BIMXAIRRMPH ., AFUESNEREAZEBNEER, Z77 &M, GPT-4tEChatGPT
B, BERAE, HEEBLEEEMNES
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REEE: 4 1introduction 9] 3.5 Models
speEwm: O Language models are few-shot learners. arXiv preprint arXiv:2005.14165
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Basic research topic 1

What is the "definition" of intellig
ence and artificial intelligence th
at everyone agrees on? Or just tal
k at each other for a long time wit
hout consensus? It's often the ca
se that chickens are talking to du
cks, misaligned communication, i
t's hard to bring together forces.
Through definition, we can set co
mmon boundaries and external ¢
onstraints for intelligence, which i
s very important. For example, is
biological instinct intelligence? Is

artificial intelligence bioengineeri
ng? What is the difference betwe
en wisdom and intelligence? Wha

+im tha diffaranan hatiainam maren
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In recent years, WaveNet-based neural vocoder can achieve

high quality of reconstructed speech. However, it depends
on the amount of speech data because of the speaker
dependent model training method. In this paper, we study
the training method of neural vocoders with limited target
speaker data. In our proposed method, a speaker.
independent WaveNet vocoder is first trained using a multi
speaker speech corpus. Then, the parameters of the
speaker-independent model are adaptively updated to
obtain the neural vocoder of the target speaker. In our
experiments, we compare local updating strategy with
global updating strategy in adaptive training, then compare
adaptive training method with speaker-dependent training
method on the same training data. Experiments show that
the neural vocoder constructed by our proposed method
can achieve better reconstructed speech quality than
STRAIGHT, and the method can achieve better objective and
subjective performance than speaker-dependent training

with limited target speaker data,

= R 63 R 33 PREE

O B 15 ELLTLETTUERS 9

RBR Wk

In recent years, neural vocoders based on WaveNet have
demonstrated the ability to reproduce high-quality speec
h. However, their effectiveness is contingent on the quant
ity of speech data available due to the dependence on sp
eaker-specific model training methods. This paper explor
es alternative approaches to training neural vocoders with
limited target speaker data. Our proposed method begins
by initially training a speaker-independent WaveNet voco

der using a multi-speaker speech corpus. Subsequently, t

he of this speaker-i model are up

dated adaptively to yield the neural vocoder for the target
speaker. In our experiments, we contrasted local and glob
al updating strategies in adaptive training, and also comp

ared the adaptive training approach with traditional speak
er-dependent training methods using identical training da
ta. The results indicate that the neural vocoder developed
through our proposed method outperforms that of STRAI

GHT in terms of reconstructed speech quality. Furthermor
e, our method yielded superior objective and subjective p

erformance compared to speaker-dependent training wit

1029 /2000
h limited target speaker data,
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